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The time correlation function for a harmonic quantum mechanical system can be related to the time 
correlation function for a corresponding classical system. Although straightforward to derive and 
well known in other contexts, this relationship has been unappreciated in the context of vibrational 
relaxation, where time correJation functions obtained from classical molecular dynamics have been 
used to predict relaxation rates for a quantum solute in a classical solvent. This inconsistent 
treatmentyuantum solute, classical solvent-predicts a relaxation rate which is slower than if the 
entire system, both solute and solvent, were treated classically. We demonstrate that if the classical 
time correlation functions are resealed to account for the ratio of quantum to classical fluctuations, 
providing a quantum mechanical treatment for the solute and the solvent, the relaxation rates and the 
entire absorption spectrum are the same as for a purely classical treatment. Our conclusions are valid 
when the solute and solvent can be described by a set of effective harmonic normal modes, and can 
also be valid when anharmonicities are present. 

I. INTRODUCTION 

A very successful melding of theory and simulation has 
been the use of classical simulations to predict properties of 
quantum systems, such as reaction rates, population relax- 
ation rates, and dephasing rates. For condensed phase sys- 
tems involving many degrees of freedom, direct quantum 
simulations to determine such rates are far too computation- 
ally expensive to be feasible. Instead, perturbation theory can 
be used with quantum correlation functions to predict these 
properties. Although quantum correlation functions are diffi- 
cult to obtain, classical molecular dynamics can often be 
used to obtain the analogous correlation function for a cor- 
responding classical system. 

There is no general prescription for relating a classical 
correlation function to a quantum correlation function. The 
precise relationship depends on the underlying Hamiltonian 
generating the classical and quantum dynamics. When the 
classical and quantum systems are both characterized by 
identical effective harmonic Hamiltonians, the underlying 
set of effective normal modes of the quantum and classical 
systems are identical, and it is then possible to relate quan- 
tum and classical correlation functions. This restriction 
to a harmonic solvent is implicit in theoretical treatments 
which truncate a solvent response function at the level of the 
second cumulant (in the context of vibrational relaxation 
see, for example, Refs. l-8). Furthermore, simulation 
studies of velocity relaxation,g vibrational relaxation,” 
photon echoes,” spectroscopic line shapes,12 and dielectric 
relaxation’3-‘5 have demonstrated that complicated classical 
atomic and molecular solvents can be approximated very 
well by harmonic baths. 

With the restriction to an effective harmonic Hamil- 
tonian for the solvent, we show how a correlation function 
obtained for a classical system can be used to obtain the 
corresponding quantum correlation function. Along with the 
detailed balance factor, we find an additional factor which is 
related to the ratio of quantum fluctuations to classical fluc- 

tuations. These well-known formal results for effective har- 
monic systems provide a useful approximation for more gen- 
eral systems, but have not always been appreciated when 
classical time correlation functions obtained from molecular 
dynamics have been used to estimate quantum rates. An ap- 
plication to absorption spectroscopy is given in Sec. II, 
where we show that the absorption line shape for a linearly 
responding system is identical under a classical or quantum 
treatment. This implies that T1, T,, and the absorption fre- 
quency shift for a harmonic vibrational mode are the same 
for a classical and corresponding quantum mechanical sys- 
tem. In Sec. III we further investigate the rate of population 
relaxation, l/T,, for a quantum oscillator in a quantum fluid, 
as well as the state-to-state transition rates. We find that some 
recent studies of vibrational relaxation have been inconsis- 
tent in their treatment of a tagged excited vibrational mode, 
described quantum mechanically, and the remaining degrees 
of freedom, treated classically. Our analysis indicates that if 
the classical bath modes can be described as an effective set 
of normal modes; and if the bath is treated quantum me- 
chanically rather than classically, the energy relaxation of the 
quantum oscillator in a quantum bath is the same as the 
energy relaxation of a corresponding classical oscillator in a 
classical bath. 

II. ABSORPTION SPECTRA 

Real-time correlation functions can be used to predict 
condensed phase absorption line shapes.t6-I9 Here we show 
that the line shape predicted by a quantum mechanical treat- 
ment is exactly the same as a classical absorption spectrum, 
provided that the absorbing modes are effectively harmonic. 
Making the approximation that the radiation field can be 
treated classically, the Hamiltonian describing the system is 

H=Ho-M.E(t), 0) 
where M is the net system dipole and E(t) is a spatially 
homogeneous, time dependent electric field along the zi? axis, 
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E(t) =fEo cos( ot). According to the golden rule, the rate 
for transitions from eigenstate Ii) of Ho to eigenstate If) is . 

k~~i=(~lMfi12E~/2n2)[S(W+Ofi)+S(W--Wfi)], (2) 

where oj=(Ef- E,)lfi and Mfi=(flM.ili). Assuming that 
the perturbation E(t) is small and that each state j i) is ini- 
tially populated according to a Boltzmann distribution, the 
absorption coefficient CX~&OJ) in the Beer-Lambert law is 

8rr2w 
@$nw =- Vfic tanwfiw/2) 

I m  dt 
X 

--m Gie ;'"'(~[M(t),MtO)I+),, (3) 

where V is the total volume of the system, c is the speed of 
light, and [A,B] + = AB + BA is the anticommutator. Thus it 
is important to compute the time correlation function for the 
anticommutator, 

Gfti”M(t>~(t[M(t),M(o)l,),, 

and its power spectrum, 

(4) 

@ ,&(Cd) =’ 2~ 
I 

0; dt t+‘G$&(t). (5) m  

It is straightforward to compute this function in the case that 
M  can be expressed as a linear combination of the effective 
normal modes {xJ of the system, with frequencies (02 and 
effective masses {mJ, 

M=C gdc,- (6) 
CY 

Because there is no coupling between normal modes, 

G%(t) = 2 ‘,x&n cos(w,t) 
Ly 

=c (ho,/2)coth(@o,/2) --$$ cos(w,t). (7) 
(Y 0101 

From this it follows that 

@&<w,=c (Xw,/2)coth(pho,) ,,gz, 
a ct (Y 

x[a(o+o,)+6(ii-o,)] “’ 

=(xo/2)coth(p~o/2)Jo(~w), (8) 

where Jo(o) is the spectral density function for the normal 
modes in Ho, 

This property of the system is independent of Planck’s con- 
stant. Substitution of Eq. (8) into Eq. (3) gives the absorption 
coefficient, 

87r2w 
%plw =- vhc taNPfim/2) 

x(fiw/2)coth(ph/2)Jo(o) 

41?W2 
=~.lo(o). (10) 

Thus the absorption coefficient is independent of Plan&s 
constant and it immediately follows that for a harmonic sys- 
tem the absorption coefficient is the same for a fully quan- 
tum system as ~for a fully classical system, 

4p&J)=~,lt4 (11) 
Furthermore, since the absorption lineshape for an oscillator 
coupled to a bath is determined parametrically by the popu- 
lation relaxation time T1, the dephasing time T2, and the 
frequency shift, these relaxation times must also be identical 
under a fully quantum and fully classical treatment as long as 
the complete system is effectively harmonic. 

To make this discussion more concrete, we will assume 
that the radiation field couples directly to a tagged oscillator 
9, which is then coupled bilinearly to a harmonic bath. The 
absorption line shape is related to T, and T2 for the tagged 
oscillator. The’ total Hamiltonian for the system is 
H=:Hq+H,fHqb I with 

H =c +A puw;q2, 
q 2p 2 

024 

tl2b) 

and 

Hqb= -qc g&x,= -qF. 
(Y 

ww 

The rate that the system absorbs energy due to a time- 
dependent perturbation V(t) = - qEocos(ot) is the same 
classically and quantum mechanically: 

(dEldt),,= (dEldt),, 

=(E$u2/4k,T)Jymdt e-imf(q(t)q(0))Cl. (13) 

The transform of the classical correlation function, 

qq(co)= I y/t e-‘%wq(o)),~, (14) 

can be obtained by analyzing a generalized Langevin equa- 
tion which produces stochastic dynamics for q which are 
equivalent to the dynamics under H, 

The friction kernel is related to Jb(W), the spectral density of 
bath modes in Hb, by a cosine transform, 
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do J,(o)cos(ot). (16) 

The friction kernel &(t) also characterizes the Gaussian ran- 
dom force B(t) by a classical fluctuation-dissipation theorem, 
(c(t) [( 0)) = k,T&( t) . The renormalized frequency h2 is 
w~-,~-t~~,(O). The spectrum 2$(o) can be obtained by 
Laplace transform methods, giving 

2y’(o)G2 
qqb)=(l@w2) [D2_02+Oy)1(0)]2+02y1(0)2 > 

(17) 

where y’(o)=,u”-’ Re icl(iw), j’/‘(~)=-p~~ Im &i~), and 

dt e-io’&l(t). 63) 

It is important to note that in the quantum mechanical analog 
of Eq. (17), y’(w), y”(u), and ~5’ are exactly the same as in 
the classical expression, 

Q:(o)= I Imdf e-'"'(~[4(t),4(0)1+),m 

=(p~0/2)coth(PA0/2)~~(o). (19) 

This is because y’(o), y”(o), and ~5~ should be thought of as 
elements of a normal mode transformation7 rather than as 
response functions per se. The normal mode transformation 
is made by first transforming to mass:weighted coordinates, 
X, = &g, and X,=Jpq. We also take P, = pal&, 
where Q includes q as well as the bath modes. The Hamil- 
tonian H4 + Hb + H+ can be diagonalized by a unitary trans- 
formation U, Y;=Z,U$, , as 

H=; T (PffXfY;). 
z 

(20) 

All the frequencies Xi are real and positive. The transforma- 
tion back to the mode q coupled directly to the radiation field 
is q=(ll,/p)~iUoiYi. Since the normal modes are un- 
coupled, 

In terms of the normal modes, 

Q(w)=(l/&Z u~i(~/2x~)coth(p~x~/2)‘TT~(xi-~w~) 
i 

=(fi/2/u4coth(pfiiw/2)7r~ U;ia(hi-lol). (22) 

In comparison with Eq. (19), we see explicitly that 

YWb2 

=(?r/2)C u;is(xi-lwl). (23) 

Since the transformation U and the normal mode frequencies 
Ai are the same classically and quantum mechanically, the 
quantity in Eq. (23) must also be the same classically or 
quantum mechanically. 

It follows that the line shape of the quantum absorption 
is exactly the same as the classical line shape. In particular, 
the dephasing time T2 and the population relaxation time T, 
are identical to the classical results. These relaxation times 
are well-defined when the absorption spectrum is sharply 
peaked, which indicates a separation of time scales between 
the tagged oscillator and the bath modes. From Eq. (17), the 
peak is at frequency fl=6+ y”(5). For w=Q 

The population relaxation time T, can be estimated as 
y’(a)-‘, and the dephasing time T2 is 2T, with either a 
quantum or classical treatment. The solvent-induced fre- 
quency shift y”(a) is also the same quantum mechanically 
and classically. 

Our derivation of the result that T,, T2, and the fre- 
quency shift are the same classically and quantum mechani- 
cally has relied on an underlying harmonic Hamiltonian for 
the tagged oscillator and the solvent. It is likely that even if 
the oscillator or the oscillator-bath coupling is anharmonic, 
the relaxation rates predicted by classical mechanics and 
quantum mechanics will still be almost identical. To lowest 
order, anharmonicity will lead to pure dephasing, decreasing 
T2 while leaving T, unchanged: 

1 1 1 
- =- +- ,-~ 
T2 2T1 TZ 

(25) 

where T, is that for a harmonic reference system and Tz 
corresponds to pure dephasing. (Higher order perturbation 
theory for the relaxation of a two-level system coupled to a 
stochastic bath can sometimes predict T2>2T,, see Refs. 
20-23.) The result of Eq. (25) has recently been derived 
starting from a classical generalized Langevin equation” us- 
ing Hb and Hqb from Eqs. (12b) and (12c), and taking an 
anharmonic potential for H, , 

2’ 1 1 
H =c +- ,uo~q2+gfq3. 

q 2p 2 

The pure dephasing time is given by the Kubo formula’-4 

$=Re 
I 

=dt(6w(t)Sw(0))jm, (27) 
2 0 

where &t(t) is the instantaneous shift in the frequency of the 
oscillator due to solvent fluctuations. Since the Laplace 
transform is taken at zero frequency, it involves only the 
classical, low-frequency portion of the bath spectral density; 
consequently, the classical and quantum predictions for Tz 
are identical as long as H, is harmonic.7 

Another anharmonic model which illustrates that Tz can 
be the same classically and quantum mechanically is to in- 
troduce a nonlinear coupling between the tagged oscillator 
and the bath, 
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H,,=; mq2C fa~a, Ly (28) 

while keeping the harmonic forms for H, and H, from Eqs. 
(12a) and (12b). The instantaneous frequency of the tagged 
oscillator is (&+ 8W(t)2)“2. To lowest order in the coupling 
constants UJ, the frequency shift is 

w=& c f&a- (29) 
Ly 

Evaluating the Kubo formula, Eq. (27), for this model gives 

1 
3 =Re $ x f,” mdf(xa(tba(0))2m 

0 LY I 0 

=-& kBTm c f," 
7 %w,), (30) 

0 a m&J, 

which is independent of fi because it measures the fluctua- 
tions of only the low frequency, classical bath modes. The 
same result can also be derived from Bloch-Redfield 
theory 24-26 if the connection is made that T,* is the relaxation 
time for the coherence between pairs of adjacent oscillator 
states n and nf 1. The dominant contribution to the relax- 
ation rate is 

$ =Re 

x I omdtx f,2M~>~,(o))S"~ (31) 
CY 

which is exactly equivalent to Eq. (30) upon evaluation of 
the harmonic oscillator matrix elements. Consequently, the 
lowest order classical and quantum mechanical predictions 
for Tz are identical for this anharmonic model. 

2 H=1)-+!$6. 
Ill. VIBRATIONAL RELAXATION 

q 2P 

Here we concentrate on the rate of relaxation of a tagged 
vibrationally excited solute in a solvent. The relaxation rate 
serves as a probe of solute-solvent interactions. The interac- 
tions which contribute to vibrational relaxation are also im- 
portant in determining a wide variety of closely related con- 
densed phase properties, such as chemical reaction rates and 
transport coefficients. In this section, we show how classical 
simulation data can be used to determine the rate of relax- 
ation, including both the population relaxation time T1 and 
the quantum state-to-state rates, of a quantum mechanical 
solute in a quantum mechanical solvent. We do this by de- 
fining a correlation function for the classical bath, converting 
it to a correlation function for a corresponding quantum bath, 
and using the quantum correlation function in a perturbation 
theory expression for the rate of vibrational transitions for a 
quantum solute. 

The bath Hamiltonian Hb describes solvent molecules as 
well as any solute modes not included in Hq, and Hq6 
couples the soIute vibrational mode and the bath. The eigen- 
state In) of H, has energy E, = fi w( y1+ l/2). A straightfor- 
ward application of Fermi’s golden rule gives the rate of 
transitions from solute state i to state j as 

kgrn .= 
J-1 dt eimfJf( V,(t) Vji<O))%“. 

The average (. * -)%” is over states of the quantum mechani- 
cal bath with thermal weight exp(-PH,). The perturbation 
matrix element is defined as 

Vij(t)=(ilexp(iH,tlfi)V exp(-iH$lfi)lj), 

Correlation function expressions for the vibrational re- 
laxation rate are useful even for classical systems because 
relaxation can be so slow that the energy loss of a solvated 
oscillator can be negligible over a long simulation. The clas- 

and oij=(Ei-Ej)ln. 
It is possible to rewrite kTEi in a slightly different form 

involving a time-symmetrized correlation function, 
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sical limit of the expression we obtain for T, for a quantum 
solute-quantum solvent agrees with previous results for the 
relaxation of a classical solute in a classical solvent. Further- 
more, we predict that when the tagged oscillator and the bath 
can be described by a set of effective harmonic normal 
modes, T, for a quantum solute in a quantum solvent is the 
same as T1 for a classical solute in a classical solvent. 

Recent simulation studies have shown that the energy 
relaxation rate predicted using a classical force-force auto- 
correlation function can agree well with that observed in a 
simulation of a classical oscillator in a classical molecular 
fluid.10*27,28 Correlation functions from a simulation of a clas- 
sical solvent were later used to predict the relaxation of a 
quantum oscillator, with either Bloch-Redfield theory2g*30 or 
a Fermi golden rule, Landau-Teller-Zener treatment.31 We 
reinterpret these existing results for the relaxation of classical 
and quantum solutes in a classical bath to account for the 
quantum mechanics of the solvent molecules, and find that 
the changes in reported lifetimes and relaxation rates can be 
considerable. 

We first review how to obtain an expression for the rate 
of transitions between vibrational levels using time- 
dependent perturbation theory. We then describe how this 
approach can be generalized to give the relaxation rate of a 
quantum solute in a quantum solvent. Only when the real 
classical bath can be represented by an effective harmonic 
bath will it be possible to accurately infer the quantum be- 
havior from a classical simulation. The result we obtain 
should be accurate under the reasonable assumption that the 
corresponding classical solvent exhibits linear response. 

The perturbation theory, Fermi golden rule, Landau- 
Teller-Zener expression for the rate of vibrational transitions 
is derived starting from a Hamiltonian of the form 
H=Hq+Hb+Hqb. 5,24,32 The Hamiltonian for a solute vibra- 
tional mode with frequency w and reduced mass p is Hq , 

(32) 

(34) 
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2 
kyrn .= 2n 

I+’ A2[1+exp(-pfiw,)] ‘. L 
-. kq’! n ““=~pnO[l+exp(-pnw)] G+) 

=e @ “k,4”c,- 1 . (38) 
According to Eq. (38), the rate of transitions between 

states diverges in the classical limit as the dimensionless en- 
ergy difference between states holkBT approaches 0. The 
quantity related to a transition rate which survives in the 
classical limit is the energy or population relaxation time T, . 
The average energy at time t of a distribution of oscillators is 
defined through the oscillator density matrix as 
(E(t))qm=Znpnn(t)E,. The rate of change of the average 
oscillator energy is 

x 
I 

~_dt eioif(~Vij(t>,Vji(0)]+)%“. (35) 

We will assume that the coupling term V is linear in the 
solute coordinate, V= - qF, where the force F exerted on 
the vibrational mode by the bath involves bath terms only. 
We will also assume that ( F)b qm = 0, i.e., any systematic force 
due to the bath has already been absorbed into the definition 
of q and the value of the frequency w, which might differ 
from the gas-phase solute vibrational frequency wo. For a 
harmonic solute, only transitions between eigenstates n and 
n-Cl are allowed. Using the harmonic oscillator matrix ele- 
ment (nlqln - 1) = js, 

n 
kqm “-““=~~w[l+exp(-pro)] 

X 
I 

m  dt ei”‘(~[F(t),F(0)]+.)jm. 
-co (36) 

With l,,(t) = (1/2kBT)([F(t),F(0)]+)~m, the Fourier- 
Laplace transform of lqm(t) is 

ZqmCi@)=/ow dt Ciorfhm(t) = i;,( co) - icm( o), (37) 

with $,(o) and $,(w) both pure real. These definitions for 
%,(t) and zqm( i w) follow the conventions used to define the 
friction kernel in the context of generalized Langevin equa- 
tions and reaction rate theories.33S34 The final equation for the 
transition rate is 

I 

d(W)), _ 
- 2 &b,,(t). 

dt n 

Assuming that the bath relaxes much faster than the times- 
tale of transitions between quantum states of the tagged os- 
cillator, the rate of change of pnn is 

&At>= 2 [k,9”,,rp,f,l(t)-k~‘mc,p,,(t>l, 
n’fn 

(40) 

which is the result of Bloch-Redfield theory along with a 
secular approximation decoupling the diagonal and off- 
diagonal matrix elements.24-26 This approximation is equiva- 
lent to a master equation description for the populations of 
the oscillator energy levels. It should be a reasonable ap- 
proximation because off-diagonal coherences in the density 
matrix contribute mostly to pure dephasing and not to popu- 
lation relaxation. Since only adjacent oscillator states are 
coupled, the rate of change of the energy is 

..^ 

(41) 

and large hlkBT. In the classical limit, h.&kBT, T;’ 
&=a iirn< co)//u.10*35 In the opposite limit, fro%-k,T, T,’ and 
kz?, both approach 2ik,( w)l~/?fio. 

In several recent simulation studies of the relaxation of 
quantum solutes2g-3’ the time correlation function &i(t) and 
its corresponding spectrum &(w) are determined from clas- 
sical molecular dynamics. These workers have determined 
T, by substituting [L,(w) directly for l;,(w) in expressions 
corresponding to Eq. (43). To assess this approximation it is 
useful to consider an explicit harmonic bath Hamiltonian 
where l(t) and its transform may be computed exactly, both 
classically and quantum mechanically. The most general 
forms for harmonic Hb and Hqb, assuming that F is linear in 
the bath modes and (F) zrn = 0, are those given in Eqs. (12b) 
and (12~). It immediately follows that 

Noting that Xnpnn(t) = 1 and that (hw/2)coth(@zw/2) is the 
thermal equilibrium average (E)z, the relaxation time T1 is 
defined by the relation 

(42) 
dCE<t>>qm _ 

dt -T,‘[(E(t))qm-(E)~I 

as 

T-~=~h(Pfi~/2) f&n<@> 
1 pfiiw/2 p * (43) 

The equation for T, is not the same as that given as Eq. (3) 
of Ref. 29: Our expression is in terms of $,(o), whereas 
that expression is in terms of &w). When our expression 
involving t&,,(w) is used, T;’ has the correct limits for small 
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TABLE I. State-to-state rates kz’2 I+n for a quantum solute. 

Classical solvent 

N?,f,(4 
p/3fiw(l +e-fi*y 

Quantum solvent 

~~,(o>=(pnw/2)coth(pnw/2)k6*(o>. e-4 

In terms of the classical correlation function measured in a 
simulation, the rate of vibrational transitions for a quantum 
solute in a quantum bath is 

2n 
=p@w[l-l-exp(-/?fio)]. 2 

The vibrational energy relaxation time for a quantum solute 
in a quantum bath, again in terms of the classical bath cor- 
relation function, is given by Eqs. (43) and (44) as 

-(46) 

This result indicates that T, for a quantum solute in a quan- 
tum solvent is exactly the same as T, for a classical solute in 
a classical solvent. Expressions for kz’! I+n are summarized 
in Table I and those for Tr’ are summarized in Table II. For 
ease of application to classical simulation data, the rates for a 
solute in a quantum solvent are expressed in terms of 
l&(o), the real part of the Fourier-Laplace transform of 
&(,l(t) of the corresponding classical solvent which can be 
obtained directly from molecular dynamics. The relaxation 
rate for a classical solute in a quantum solvent is included for 
completeness. 

Quantizing the solvent enhances state-to-state rates and 
energy relaxation rates by a factor of (@o/2)coth(@o/2). 
This rate enhancement is a consequence of the solute-bath 
coupling (F(t)F(0))jJm scaling as (x”,)~~ for solvent mode 
x,. The coupling is only capable of inducing vibrational 
transitions when the solvent mode frequency w, is close to 
the solute frequency o. For these solvent modes, the ratio of 
the quantum coupling to the classical coupling, 
(&2”/{x”,): 3 is exactly the factor (j?fio/2)coth(@io/2). The 

TABLE II. Vibrational energy relaxation rates T;’ . , 

Classical solute 

Classical solvent 

t;(4 
P 

Quantum solvent 

Quantum solute 

asymptotic limits of the ratio of the relaxation rate for a 
quantum solute in a quantum solvent to the relaxation rate of 
a quantum solute in a classical solvent are 

T; *, quantum solvent 1, fio4k~T 
T, ‘, classical solvent = fiw/2kBT, fiwSkBT (47) 

as a function of the solute frequency 0. The ratio of state-to- 
state rates scales the same way. 

For a molecular solvent, the rate of relaxation has been 
expressed formally in terms of a kernel &(t) which depends 
on the detailed intermolecular and intramolecular interac- 
tions between the solute and solvent. When the solvent is 
classical, &w) can be determined by a trqsform of the 
classical fluctuating forces on the solute vibration,10927-30 

dt cos( wt)( SF(t) SF(0)),l. (48) 

In such simulations the solute vibrational mode is held fixed 
at its equilibrium position while the fluctuating forces are 
autocorrelated. An alternate method is to allow the solute to 
vibrate and to obtain (&t)4(0)),,, which may be inverted to 
give Q1( t) .36 The parameter 5 defined by others27-2gX31 corre- 
sponds to 2k,TfL,( w) in our notation. One can’view Eq. (48) 
as essentially extracting the density of normal modes in the 
solvent at the frequency o. This normal mode picture is ac- 
tually implicit in the perturbation theory that has been em- 
ployed, since the bath terms are only included to second 
order. Thus, one can construct an effective harmonic Hamil- 
tonian which, when treated classically, produces the same 
results for &(t) and I,,( i w) as are obtained from the actual 
molecular solvent. Furthermore, when the harmonic bath is 
treated quantum mechanically, f;,(w) is related to ifI 
through Eq. (44). Therefore, assuming linear response, the 
vibrational transition rates kz”_ 1 +n and the energy relaxation 
time T, for a quantum solute with frequency w in a quantum 
solvent can be obtained using &(w) fro& the corresponding 
classical solvent and the relations in Tables I and II. 

The possibility of using &(o) from a classical simula- 
tion tb estimate &m(o) for the corresponding quantum me- 
chanical system has been discussed by Beme in the general 
context of time correlation functions.‘6 In related applica- 
tions to electron transfer reaction rates, it has been shown 
how spectral densities can be extracted from classical 
simulations37 &d used to accurately predict the response of 
correspdnding quantum solvents.38 

We now reanalyze relaxation rates which &ve been re- 
cently reported for a variety of molecular models. Wilson, 
Whitnell, and Hynes (WWH) investigated the vibrational re- 
laxation of the C-Cl stretch in a model of CH3C1 in water. 
Treat& all the modes classically, they obtained relaxation 
rates in two ways. First, using nonequilibrium molecular dy- 
namics, energy was placed in the C-Cl stretch instanta- 
neously and the decay of energy was fit to the form 
exp(-tlT1). In a second set of simulations, the C-Cl bond 
was held fixed at its equilibrium position and the autocorre- 
lation function (SF(O) SF(t)),, of the fluctuating forces on 
the bond was averaged. The relaxation time T1 was estimated 
using Eq. (46) and a frequency of 676 cm-’ for the bond. 
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WWH found that both methods gave similar results, T1=4.7 
ps. The good agreement between nonequilibrium simulations 
and classical perturbation theory indicates that the relaxation 
is in the linear response regime. If the solute vibrational 
mode and the solvent were both quantized, we would predict 
that there would be little change to Ti. 

It is possible that linear response would be violated for a 
sufficiently large excitation of the C-Cl bond, since it is 
treated as a Morse potential in the simulation. Tuckerman 
and Berne have detected the effects of the anharmonicity of 
the Morse potential in their simulations of the vibrational 
relaxation of a highly excited Morse oscillator.t” The excita- 
tion energies which were used by WWH were not large 
enough to sample the anharmonic tail of the potential; how- 
ever, and anharmonic effects were not important in their 
simulations. 

Figueirido and Levy (FL) have studied the relaxation of 
a quantum C-Cl stretch in a model of CH,Cl in water,2g 
similar to the model used by WWH. The fluctuating forces 
on the C-Cl bond were Fourier analyzed at the C-Cl stretch 
frequency of 673 cm-’ to give iLt( 0). The imaginary part of 
the transform, zE,( o), was set to zero. The real part, 
&(o), was used in a Bloch-Redfield propagation of the 
density matrix for the C-Cl vibrational mode. Neglecting the 
imaginary part of the transform corresponds to neglecting 
solvent-induced frequency shifts. Population relaxation is 
dominated by the real part of the transform, which to some 
extent justifies the omission of the imaginary part of the 
transform. 

The type of perturbation theory used by FL, in which the 
correlation function from a classical simulation is used di- 
rectly, corresponds to treating the bath classically and the 
solute quantum mechanically. Under this mixed treatment of 
solute and solvent, FL predict a relaxation time of T1-10 ps 
for the C-Cl stretch. The same time is predicted whether or 
not the off-diagonal density matrix elements ,are included in 
the calculation. If the molecular solvent can be considered to 
be an effective harmonic bath, then a consistent quantum 
mechanical treatment of both the solvent and the solute de- 
creases the relaxation time to 5.7 ps. This is the same T, as 
predicted using classical perturbation theory and the value of 
&(w) reported by FL. 

Classical, nonequilibrium simulations analogous to those 
of WWH were also performed by FL. From these simula- 
tions of excited C-Cl stretches, the relaxation time for the 
classical solute vibrational mode in a classical solvent was 
found to be about 4 ps, rather than the value 5.7 ps which 
would be predicted by classical linear response theory. The 
disagreement between the nonequilibrium classical simula- 
tions and the classical perturbation theory might be due to 
anharmonicities in the C-Cl Morse potential. These anhar- 
monicities would be expected to decrease the relaxation time 
in nonequilibrium molecular dynamics relative to the decay 
of equilibrium fluctuations in the energy, which is the same 
direction as the FL results. However, since these anharmo- 
nicities did not seem to be important for WWH, it is not clear 
that they are solely responsible for the difference in the rate 
obtained by FL using direct nonequilibrium molecular dy- 
namics and the rate predicted by classical perturbation 

theory. It is also possibie that the anharmonic nature of the 
molecular solvent is contributing to the difference between 
the value of ,T1 calculated from perturbation theory and the 
actual T, observed in the nonequilibrium simulations. It 
should be noted; however, that simulation studies of vibra- 
tional relaxation .in a Lennard-Jones fluid have indicated that 
a harmonic bath can serve as a good representation of the 
solvent. lo 

There is also a small difference between-the results of FL 
from classical nonequilibrium simulations and the nonequi- 
librium simulation results of WWH, 4 ps vs 4.7 ps for T,. 
This difference is most likely due to small differences in the 
molecular models, which were used by each. 

The effects of quantizing the bath modes are quite con- 
siderable when the quantum solute mode is a very high fre- 
quency .vibration, such as a proton stretch. The Si-H stretch- 
ing, mode on the H/Si( 111) 1 X 1 surface was recently studied 
by Gai and Voth (GV).30 The experimentally determined life- 
time for the ZI= 1 state is about 0.95 ns.3g,40 From their simu- 
lation data, GV obtained &(o) for use with Bloch-Redfield 
theory. The imaginary part of the transform, .&w), was ne- 
glected in their implementation of the Bloch-Redfield equa- 
tions, just as was done by FL. GV find a lifetime of 1.7-t-0.1 
ns for the Si-H stretch, almost twice the experimental life- 
time. Based oathe frequency of this stretch, 2084 cm-‘, we 
predict that quantizing the bath modes in the. simulation 
model of the Si surface would reduce the Si-H lifetime to 
about 0.34 ns, one-third of the experimentally observed life- 
time. This substantial difference in the predicted relaxation 
rate is important to consider when using data such as relax- 
ation times to optimize the parameters of a specific molecu- 
lar model. We further note that the harmonic treatment of the 
substrate modes and their couplings to the Si-H stretch on 
which our predictions are based might not be entirely appro- 
priate, since GV have suggested that the important couplings 
are highly nonlinear 

Bruehl and Hynes (BH) have recently studied relaxation 
times for various stretching modes in a model of an AH***B 
hydrogen bonding complex in ‘a CH3C1-like solvent.31 Hold- 
ing the atoms of the hydrogen-bonded complex fixed, they 
allowed the solvent molecules to fluctuate and autocorrelated 
the fluctuating forces acting on various stretching modes of 
the AH-*-B complex. The lifetime for each of the modes, 
estimated as the inverse of the rate for the v=l to Y=O 
transition for each mode, was calculated using the data from 
classical simulations. The lifetime for the symmetric 
(AH)-B stretch was reported as 0.04 to 0.14 ps for a 
symmetric-stretch frequency range of 100 to 300 cm-‘. The 
frequency is low because this mode involves motion of the 
heavy A and B particles. Quantizing the solvent modes 
would not produce a substantial change in the lifetime of the 
v= 1 state for this low frequency mode. The next higher fre- 
quency mode considered was the doubly degenerate AHB 
bending mode. A lifetime of 2-35 ps was estimated for bend 
frequencies in the range 1000-1700 cm-‘. If the solvent can 
be treated as effectively harmonic, quantizing the solvent 
modes should decrease the lifetime of this mode to the range 
0.8-8.4 ps, a factor of 2.5 decrease in the lifetimes at the 
lower frequencies to a factor of 4 at the high end of the 
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frequency range. Even more dramatic are the changes to the 
relaxation times for the AH proton stretch. Assuming a fre- 
quency range of 2500-3500 cm-’ for this. mode, BH calcu- 
lated lifetimes ranging from 4-44 ns for the v=l to v=O 
transition. We find that with a quantized solvent, the corre- 
sponding lifetimes are 0.7-5.2 ns, a decrease in the lifetime 
by factors of 6 to 9 relative to a classical solvent. 

IV. CONCLUSION 

We have provided a theoretic framework for extracting 
relaxation times for quantum solutes in quantum solvents 
from classical simulation data. Using an effective harmonic 
Hamiltonian, we find that T, for a classical solute-classical 
solvent is exactly the same as T, for a quantum solute- 
quantum solvent, and is faster than T, for a quantum solute- 
classical solvent by a factor of (fiw/2kBT)coth(hc.d2/2ksT). 
This factor can represent an order of magnitude enhancement 
to a relaxation rate. We also find, again for a harmonic 
model, that T2, the frequency shift, and indeed the entire 
absorption line shape, are also the same classically and quan- 
tum mechanically. Even when anharmonicities are present, 
quantum and classical perturbation theory predictions for T1 
and T2 can still be identical. Our results suggest the strong 
possibility that a purely classical study of vibrational energy 
relaxation might provide an accurate representation of im- 
portant aspects of the relaxation dynamics of a fully quantum 
mechanical system. 
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